If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2-15t+12=0
a = -16; b = -15; c = +12;
Δ = b2-4ac
Δ = -152-4·(-16)·12
Δ = 993
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{993}}{2*-16}=\frac{15-\sqrt{993}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{993}}{2*-16}=\frac{15+\sqrt{993}}{-32} $
| 2(x+4)-6=5x-3(-1+x) | | 5z=41 | | -20/g=2 | | 3(n+6)=42 | | d+22.55=71.25 | | 9-6n=-5+8n | | f-73/5=5 | | 10t+-7=17 | | (2u+7)(3u–1)=0 | | 14+2r=-12-17r+6r | | 1224=(65.5+70.5)h/2 | | 48=3(g+10) | | -7.2=0.3y | | 7(d-78)=63 | | x/5+5=x/4-5 | | 7c+5-6c=-28+10 | | 19c+10=17c | | 4(r-64)+-59=-7 | | -4x+81=53 | | 6p+8=326 | | x²+x=95 | | h+44/8=9 | | x/21=6 | | -12x+6=-90 | | b/3+11=13 | | 6j2-19j+14=0 | | 7(d-83)=49 | | 1805x+3x+12=180 | | -19+10b=12b+1 | | –4b–5=3b+9 | | 15x+15-7x-54=4x | | f/4+15=16 |